Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Neuroinformatics ; 22(2): 177-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446357

ABSTRACT

Large-scale diffusion MRI tractography remains a significant challenge. Users must orchestrate a complex sequence of instructions that requires many software packages with complex dependencies and high computational costs. We developed MaPPeRTrac, an edge-centric tractography pipeline that simplifies and accelerates this process in a wide range of high-performance computing (HPC) environments. It fully automates either probabilistic or deterministic tractography, starting from a subject's magnetic resonance imaging (MRI) data, including structural and diffusion MRI images, to the edge density image (EDI) of their structural connectomes. Dependencies are containerized with Singularity (now called Apptainer) and decoupled from code to enable rapid prototyping and modification. Data derivatives are organized with the Brain Imaging Data Structure (BIDS) to ensure that they are findable, accessible, interoperable, and reusable following FAIR principles. The pipeline takes full advantage of HPC resources using the Parsl parallel programming framework, resulting in the creation of connectome datasets of unprecedented size. MaPPeRTrac is publicly available and tested on commercial and scientific hardware, so it can accelerate brain connectome research for a broader user community. MaPPeRTrac is available at: https://github.com/LLNL/mappertrac .


Subject(s)
Connectome , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Connectome/methods
2.
medRxiv ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961155

ABSTRACT

We conducted a multi-ancestry genome-wide association study of prostate-specific antigen (PSA) levels in 296,754 men (211,342 European ancestry; 58,236 African ancestry; 23,546 Hispanic/Latino; 3,630 Asian ancestry; 96.5% of participants were from the Million Veteran Program). We identified 318 independent genome-wide significant (p≤5e-8) variants, 184 of which were novel. Most demonstrated evidence of replication in an independent cohort (n=95,768). Meta-analyzing discovery and replication (n=392,522) identified 447 variants, of which a further 111 were novel. Out-of-sample variance in PSA explained by our new polygenic risk score reached 16.9% (95% CI=16.1%-17.8%) in European ancestry, 9.5% (95% CI=7.0%-12.2%) in African ancestry, 18.6% (95% CI=15.8%-21.4%) in Hispanic/Latino, and 15.3% (95% CI=12.7%-18.1%) in Asian ancestry, and lower for higher age. Our study highlights how including proportionally more participants from underrepresented populations improves genetic prediction of PSA levels, with potential to personalize prostate cancer screening.

4.
medRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37292833

ABSTRACT

Genome-wide polygenic risk scores (GW-PRS) have been reported to have better predictive ability than PRS based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer risk variants from multi-ancestry GWAS and fine-mapping studies (PRS 269 ). GW-PRS models were trained using a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls used to develop the multi-ancestry PRS 269 . Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California/Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI=0.635-0.677) in African and 0.844 (95% CI=0.840-0.848) in European ancestry men and corresponding prostate cancer OR of 1.83 (95% CI=1.67-2.00) and 2.19 (95% CI=2.14-2.25), respectively, for each SD unit increase in the GW-PRS. However, compared to the GW-PRS, in African and European ancestry men, the PRS 269 had larger or similar AUCs (AUC=0.679, 95% CI=0.659-0.700 and AUC=0.845, 95% CI=0.841-0.849, respectively) and comparable prostate cancer OR (OR=2.05, 95% CI=1.87-2.26 and OR=2.21, 95% CI=2.16-2.26, respectively). Findings were similar in the validation data. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the multi-ancestry PRS 269 constructed with fine-mapping.

5.
Am J Hum Genet ; 110(7): 1200-1206, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311464

ABSTRACT

Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS269). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS269. Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI = 0.635-0.677) in African and 0.844 (95% CI = 0.840-0.848) in European ancestry men and corresponding prostate cancer ORs of 1.83 (95% CI = 1.67-2.00) and 2.19 (95% CI = 2.14-2.25), respectively, for each SD unit increase in the GW-PRS. Compared to the GW-PRS, in African and European ancestry men, the PRS269 had larger or similar AUCs (AUC = 0.679, 95% CI = 0.659-0.700 and AUC = 0.845, 95% CI = 0.841-0.849, respectively) and comparable prostate cancer ORs (OR = 2.05, 95% CI = 1.87-2.26 and OR = 2.21, 95% CI = 2.16-2.26, respectively). Findings were similar in the validation studies. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the PRS269 developed from multi-ancestry GWASs and fine-mapping.


Subject(s)
Genetic Predisposition to Disease , Prostatic Neoplasms , Humans , Male , Black People/genetics , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Prostatic Neoplasms/genetics , Risk Factors , White People/genetics
6.
JAMA Cardiol ; 8(6): 564-574, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37133828

ABSTRACT

Importance: Primary prevention of atherosclerotic cardiovascular disease (ASCVD) relies on risk stratification. Genome-wide polygenic risk scores (PRSs) are proposed to improve ASCVD risk estimation. Objective: To determine whether genome-wide PRSs for coronary artery disease (CAD) and acute ischemic stroke improve ASCVD risk estimation with traditional clinical risk factors in an ancestrally diverse midlife population. Design, Setting, and Participants: This was a prognostic analysis of incident events in a retrospectively defined longitudinal cohort conducted from January 1, 2011, to December 31, 2018. Included in the study were adults free of ASCVD and statin naive at baseline from the Million Veteran Program (MVP), a mega biobank with genetic, survey, and electronic health record data from a large US health care system. Data were analyzed from March 15, 2021, to January 5, 2023. Exposures: PRSs for CAD and ischemic stroke derived from cohorts of largely European descent and risk factors, including age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein (HDL) cholesterol, smoking, and diabetes status. Main Outcomes and Measures: Incident nonfatal myocardial infarction (MI), ischemic stroke, ASCVD death, and composite ASCVD events. Results: A total of 79 151 participants (mean [SD] age, 57.8 [13.7] years; 68 503 male [86.5%]) were included in the study. The cohort included participants from the following harmonized genetic ancestry and race and ethnicity categories: 18 505 non-Hispanic Black (23.4%), 6785 Hispanic (8.6%), and 53 861 non-Hispanic White (68.0%) with a median (5th-95th percentile) follow-up of 4.3 (0.7-6.9) years. From 2011 to 2018, 3186 MIs (4.0%), 1933 ischemic strokes (2.4%), 867 ASCVD deaths (1.1%), and 5485 composite ASCVD events (6.9%) were observed. CAD PRS was associated with incident MI in non-Hispanic Black (hazard ratio [HR], 1.10; 95% CI, 1.02-1.19), Hispanic (HR, 1.26; 95% CI, 1.09-1.46), and non-Hispanic White (HR, 1.23; 95% CI, 1.18-1.29) participants. Stroke PRS was associated with incident stroke in non-Hispanic White participants (HR, 1.15; 95% CI, 1.08-1.21). A combined CAD plus stroke PRS was associated with ASCVD deaths among non-Hispanic Black (HR, 1.19; 95% CI, 1.03-1.17) and non-Hispanic (HR, 1.11; 95% CI, 1.03-1.21) participants. The combined PRS was also associated with composite ASCVD across all ancestry groups but greater among non-Hispanic White (HR, 1.20; 95% CI, 1.16-1.24) than non-Hispanic Black (HR, 1.11; 95% CI, 1.05-1.17) and Hispanic (HR, 1.12; 95% CI, 1.00-1.25) participants. Net reclassification improvement from adding PRS to a traditional risk model was modest for the intermediate risk group for composite CVD among men (5-year risk >3.75%, 0.38%; 95% CI, 0.07%-0.68%), among women, (6.79%; 95% CI, 3.01%-10.58%), for age older than 55 years (0.25%; 95% CI, 0.03%-0.47%), and for ages 40 to 55 years (1.61%; 95% CI, -0.07% to 3.30%). Conclusions and Relevance: Study results suggest that PRSs derived predominantly in European samples were statistically significantly associated with ASCVD in the multiancestry midlife and older-age MVP cohort. Overall, modest improvement in discrimination metrics were observed with addition of PRSs to traditional risk factors with greater magnitude in women and younger age groups.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Ischemic Stroke , Myocardial Infarction , Stroke , Veterans , Adult , Humans , Male , Female , Middle Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Retrospective Studies , Risk Assessment/methods , Risk Factors , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Atherosclerosis/epidemiology , Myocardial Infarction/epidemiology , Stroke/epidemiology , Cholesterol
7.
Eur Urol ; 84(1): 13-21, 2023 07.
Article in English | MEDLINE | ID: mdl-36872133

ABSTRACT

BACKGROUND: Genetic factors play an important role in prostate cancer (PCa) susceptibility. OBJECTIVE: To discover common genetic variants contributing to the risk of PCa in men of African ancestry. DESIGN, SETTING, AND PARTICIPANTS: We conducted a meta-analysis of ten genome-wide association studies consisting of 19378 cases and 61620 controls of African ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Common genotyped and imputed variants were tested for their association with PCa risk. Novel susceptibility loci were identified and incorporated into a multiancestry polygenic risk score (PRS). The PRS was evaluated for associations with PCa risk and disease aggressiveness. RESULTS AND LIMITATIONS: Nine novel susceptibility loci for PCa were identified, of which seven were only found or substantially more common in men of African ancestry, including an African-specific stop-gain variant in the prostate-specific gene anoctamin 7 (ANO7). A multiancestry PRS of 278 risk variants conferred strong associations with PCa risk in African ancestry studies (odds ratios [ORs] >3 and >5 for men in the top PRS decile and percentile, respectively). More importantly, compared with men in the 40-60% PRS category, men in the top PRS decile had a significantly higher risk of aggressive PCa (OR = 1.23, 95% confidence interval = 1.10-1.38, p = 4.4 × 10-4). CONCLUSIONS: This study demonstrates the importance of large-scale genetic studies in men of African ancestry for a better understanding of PCa susceptibility in this high-risk population and suggests a potential clinical utility of PRS in differentiating between the risks of developing aggressive and nonaggressive disease in men of African ancestry. PATIENT SUMMARY: In this large genetic study in men of African ancestry, we discovered nine novel prostate cancer (PCa) risk variants. We also showed that a multiancestry polygenic risk score was effective in stratifying PCa risk, and was able to differentiate risk of aggressive and nonaggressive disease.


Subject(s)
Genetic Predisposition to Disease , Prostatic Neoplasms , Male , Humans , Genome-Wide Association Study , Prostatic Neoplasms/genetics , Prostatic Neoplasms/epidemiology , Risk Factors , Black People/genetics
8.
PLoS Genet ; 19(3): e1010623, 2023 03.
Article in English | MEDLINE | ID: mdl-36940203

ABSTRACT

Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q's<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.


Subject(s)
Depressive Disorder, Major , Veterans , Humans , Suicidal Ideation , Veterans/psychology , Genome-Wide Association Study , Depressive Disorder, Major/genetics , Suicide, Attempted/psychology , Risk Factors
9.
Phys Med Biol ; 68(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-36716497

ABSTRACT

Objective. Developing Machine Learning models (N Gorre et al 2023) for clinical applications from scratch can be a cumbersome task requiring varying levels of expertise. Seasoned developers and researchers may also often face incompatible frameworks and data preparation issues. This is further complicated in the context of diagnostic radiology and oncology applications, given the heterogenous nature of the input data and the specialized task requirements. Our goal is to provide clinicians, researchers, and early AI developers with a modular, flexible, and user-friendly software tool that can effectively meet their needs to explore, train, and test AI algorithms by allowing users to interpret their model results. This latter step involves the incorporation of interpretability and explainability methods that would allow visualizing performance as well as interpreting predictions across the different neural network layers of a deep learning algorithm.Approach. To demonstrate our proposed tool, we have developed the CRP10 AI Application Interface (CRP10AII) as part of the MIDRC consortium. CRP10AII is based on the web service Django framework in Python. CRP10AII/Django/Python in combination with another data manager tool/platform, data commons such as Gen3 can provide a comprehensive while easy to use machine/deep learning analytics tool. The tool allows to test, visualize, interpret how and why the deep learning model is performing. The major highlight of CRP10AII is its capability of visualization and interpretability of otherwise Blackbox AI algorithms.Results. CRP10AII provides many convenient features for model building and evaluation, including: (1) query and acquire data according to the specific application (e.g. classification, segmentation) from the data common platform (Gen3 here); (2) train the AI models from scratch or use pre-trained models (e.g. VGGNet, AlexNet, BERT) for transfer learning and test the model predictions, performance assessment, receiver operating characteristics curve evaluation; (3) interpret the AI model predictions using methods like SHAPLEY, LIME values; and (4) visualize the model learning through heatmaps and activation maps of individual layers of the neural network.Significance. Unexperienced users may have more time to swiftly pre-process, build/train their AI models on their own use-cases, and further visualize and explore these AI models as part of this pipeline, all in an end-to-end manner. CRP10AII will be provided as an open-source tool, and we expect to continue developing it based on users' feedback.


Subject(s)
Algorithms , Neural Networks, Computer , Software , Machine Learning , ROC Curve
10.
JAMA Psychiatry ; 80(2): 135-145, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36515925

ABSTRACT

Importance: Suicide is a leading cause of death; however, the molecular genetic basis of suicidal thoughts and behaviors (SITB) remains unknown. Objective: To identify novel, replicable genomic risk loci for SITB. Design, Setting, and Participants: This genome-wide association study included 633 778 US military veterans with and without SITB, as identified through electronic health records. GWAS was performed separately by ancestry, controlling for sex, age, and genetic substructure. Cross-ancestry risk loci were identified through meta-analysis. Study enrollment began in 2011 and is ongoing. Data were analyzed from November 2021 to August 2022. Main Outcome and Measures: SITB. Results: A total of 633 778 US military veterans were included in the analysis (57 152 [9%] female; 121 118 [19.1%] African ancestry, 8285 [1.3%] Asian ancestry, 452 767 [71.4%] European ancestry, and 51 608 [8.1%] Hispanic ancestry), including 121 211 individuals with SITB (19.1%). Meta-analysis identified more than 200 GWS (P < 5 × 10-8) cross-ancestry risk single-nucleotide variants for SITB concentrated in 7 regions on chromosomes 2, 6, 9, 11, 14, 16, and 18. Top single-nucleotide variants were largely intronic in nature; 5 were independently replicated in ISGC, including rs6557168 in ESR1, rs12808482 in DRD2, rs77641763 in EXD3, rs10671545 in DCC, and rs36006172 in TRAF3. Associations for FBXL19 and AC018880.2 were not replicated. Gene-based analyses implicated 24 additional GWS cross-ancestry risk genes, including FURIN, TSNARE1, and the NCAM1-TTC12-ANKK1-DRD2 gene cluster. Cross-ancestry enrichment analyses revealed significant enrichment for expression in brain and pituitary tissue, synapse and ubiquitination processes, amphetamine addiction, parathyroid hormone synthesis, axon guidance, and dopaminergic pathways. Seven other unique European ancestry-specific GWS loci were identified, 2 of which (POM121L2 and METTL15/LINC02758) were replicated. Two additional GWS ancestry-specific loci were identified within the African ancestry (PET112/GATB) and Hispanic ancestry (intergenic locus on chromosome 4) subsets, both of which were replicated. No GWS loci were identified within the Asian ancestry subset; however, significant enrichment was observed for axon guidance, cyclic adenosine monophosphate signaling, focal adhesion, glutamatergic synapse, and oxytocin signaling pathways across all ancestries. Within the European ancestry subset, genetic correlations (r > 0.75) were observed between the SITB phenotype and a suicide attempt-only phenotype, depression, and posttraumatic stress disorder. Additionally, polygenic risk score analyses revealed that the Million Veteran Program polygenic risk score had nominally significant main effects in 2 independent samples of veterans of European and African ancestry. Conclusions and Relevance: The findings of this analysis may advance understanding of the molecular genetic basis of SITB and provide evidence for ESR1, DRD2, TRAF3, and DCC as cross-ancestry candidate risk genes. More work is needed to replicate these findings and to determine if and how these genes might impact clinical care.


Subject(s)
Veterans , Humans , Female , Male , Suicidal Ideation , Genome-Wide Association Study , TNF Receptor-Associated Factor 3/genetics , Genetic Loci/genetics , Nucleotides , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Proteins , Protein Serine-Threonine Kinases/genetics
11.
Elife ; 112022 07 08.
Article in English | MEDLINE | ID: mdl-35801699

ABSTRACT

Background: We recently developed a multi-ancestry polygenic risk score (PRS) that effectively stratifies prostate cancer risk across populations. In this study, we validated the performance of the PRS in the multi-ancestry Million Veteran Program and additional independent studies. Methods: Within each ancestry population, the association of PRS with prostate cancer risk was evaluated separately in each case-control study and then combined in a fixed-effects inverse-variance-weighted meta-analysis. We further assessed the effect modification by age and estimated the age-specific absolute risk of prostate cancer for each ancestry population. Results: The PRS was evaluated in 31,925 cases and 490,507 controls, including men from European (22,049 cases, 414,249 controls), African (8794 cases, 55,657 controls), and Hispanic (1082 cases, 20,601 controls) populations. Comparing men in the top decile (90-100% of the PRS) to the average 40-60% PRS category, the prostate cancer odds ratio (OR) was 3.8-fold in European ancestry men (95% CI = 3.62-3.96), 2.8-fold in African ancestry men (95% CI = 2.59-3.03), and 3.2-fold in Hispanic men (95% CI = 2.64-3.92). The PRS did not discriminate risk of aggressive versus nonaggressive prostate cancer. However, the OR diminished with advancing age (European ancestry men in the top decile: ≤55 years, OR = 7.11; 55-60 years, OR = 4.26; >70 years, OR = 2.79). Men in the top PRS decile reached 5% absolute prostate cancer risk ~10 years younger than men in the 40-60% PRS category. Conclusions: Our findings validate the multi-ancestry PRS as an effective prostate cancer risk stratification tool across populations. A clinical study of PRS is warranted to determine whether the PRS could be used for risk-stratified screening and early detection. Funding: This work was supported by the National Cancer Institute at the National Institutes of Health (grant numbers U19 CA214253 to C.A.H., U01 CA257328 to C.A.H., U19 CA148537 to C.A.H., R01 CA165862 to C.A.H., K99 CA246063 to B.F.D, and T32CA229110 to F.C), the Prostate Cancer Foundation (grants 21YOUN11 to B.F.D. and 20CHAS03 to C.A.H.), the Achievement Rewards for College Scientists Foundation Los Angeles Founder Chapter to B.F.D, and the Million Veteran Program-MVP017. This research has been conducted using the UK Biobank Resource under application number 42195. This research is based on data from the Million Veteran Program, Office of Research and Development, and the Veterans Health Administration. This publication does not represent the views of the Department of Veteran Affairs or the United States Government.


Subject(s)
Genome-Wide Association Study , Prostatic Neoplasms , Age Factors , Case-Control Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Multifactorial Inheritance , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Risk Factors , United States/epidemiology
12.
Front Neuroinform ; 16: 752471, 2022.
Article in English | MEDLINE | ID: mdl-35651721

ABSTRACT

The anatomic validity of structural connectomes remains a significant uncertainty in neuroimaging. Edge-centric tractography reconstructs streamlines in bundles between each pair of cortical or subcortical regions. Although edge bundles provides a stronger anatomic embedding than traditional connectomes, calculating them for each region-pair requires exponentially greater computation. We observe that major speedup can be achieved by reducing the number of streamlines used by probabilistic tractography algorithms. To ensure this does not degrade connectome quality, we calculate the identifiability of edge-centric connectomes between test and re-test sessions as a proxy for information content. We find that running PROBTRACKX2 with as few as 1 streamline per voxel per region-pair has no significant impact on identifiability. Variation in identifiability caused by streamline count is overshadowed by variation due to subject demographics. This finding even holds true in an entirely different tractography algorithm using MRTrix. Incidentally, we observe that Jaccard similarity is more effective than Pearson correlation in calculating identifiability for our subject population.

13.
Am J Respir Crit Care Med ; 206(10): 1220-1229, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35771531

ABSTRACT

Rationale: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in severe acute respiratory syndrome coronavirus 2 infection and disease severity is unclear. Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with coronavirus disease (COVID-19) infection among participants in the Million Veteran Program (MVP). Methods: The MUC5B rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records. Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by transancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (body mass index, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease, and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects. Measurements and Main Results: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations in transancestry meta-analyses within the MVP (Ncases = 4,325; Ncontrols = 507,640; OR = 0.89 [0.82-0.97]; P = 6.86 × 10-3) and joint meta-analyses with the HGI (Ncases = 13,320; Ncontrols = 1,508,841; OR, 0.90 [0.86-0.95]; P = 8.99 × 10-5). The rs35705950-T allele was not associated with reduced COVID-19 positivity in transancestry meta-analysis within the MVP (Ncases = 19,168/Ncontrols = 492,854; OR, 0.98 [0.95-1.01]; P = 0.06) but was nominally significant (P < 0.05) in the joint meta-analysis with the HGI (Ncases = 44,820; Ncontrols = 1,775,827; OR, 0.97 [0.95-1.00]; P = 0.03). Associations were not observed with severe outcomes or mortality. Among individuals of European ancestry in the MVP, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR, 0.82 [0.72-0.93]; P = 0.001). Conclusions: The MUC5B variant rs35705950-T may confer protection in COVID-19 hospitalizations.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , COVID-19/epidemiology , COVID-19/genetics , Mucin-5B/genetics , Polymorphism, Genetic , Idiopathic Pulmonary Fibrosis/genetics , Genotype , Hospitalization , Genetic Predisposition to Disease/genetics
14.
JAMA Intern Med ; 182(8): 796-804, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759254

ABSTRACT

Importance: Sickle cell trait (SCT), defined as the presence of 1 hemoglobin beta sickle allele (rs334-T) and 1 normal beta allele, is prevalent in millions of people in the US, particularly in individuals of African and Hispanic ancestry. However, the association of SCT with COVID-19 is unclear. Objective: To assess the association of SCT with the prepandemic health conditions in participants of the Million Veteran Program (MVP) and to assess the severity and sequelae of COVID-19. Design, Setting, and Participants: COVID-19 clinical data include 2729 persons with SCT, of whom 353 had COVID-19, and 129 848 SCT-negative individuals, of whom 13 488 had COVID-19. Associations between SCT and COVID-19 outcomes were examined using firth regression. Analyses were performed by ancestry and adjusted for sex, age, age squared, and ancestral principal components to account for population stratification. Data for the study were collected between March 2020 and February 2021. Exposures: The hemoglobin beta S (HbS) allele (rs334-T). Main Outcomes and Measures: This study evaluated 4 COVID-19 outcomes derived from the World Health Organization severity scale and phenotypes derived from International Classification of Diseases codes in the electronic health records. Results: Of the 132 577 MVP participants with COVID-19 data, mean (SD) age at the index date was 64.8 (13.1) years. Sickle cell trait was present in 7.8% of individuals of African ancestry and associated with a history of chronic kidney disease, diabetic kidney disease, hypertensive kidney disease, pulmonary embolism, and cerebrovascular disease. Among the 4 clinical outcomes of COVID-19, SCT was associated with an increased COVID-19 mortality in individuals of African ancestry (n = 3749; odds ratio, 1.77; 95% CI, 1.13 to 2.77; P = .01). In the 60 days following COVID-19, SCT was associated with an increased incidence of acute kidney failure. A counterfactual mediation framework estimated that on average, 20.7% (95% CI, -3.8% to 56.0%) of the total effect of SCT on COVID-19 fatalities was due to acute kidney failure. Conclusions and Relevance: In this genetic association study, SCT was associated with preexisting kidney comorbidities, increased COVID-19 mortality, and kidney morbidity.


Subject(s)
Acute Kidney Injury , COVID-19 , Sickle Cell Trait , Acute Kidney Injury/complications , Acute Kidney Injury/epidemiology , Black or African American/genetics , COVID-19/epidemiology , Hemoglobins , Humans , Kidney , Sickle Cell Trait/complications , Sickle Cell Trait/epidemiology , Sickle Cell Trait/genetics
15.
Mol Psychiatry ; 27(4): 2264-2272, 2022 04.
Article in English | MEDLINE | ID: mdl-35347246

ABSTRACT

To identify pan-ancestry and ancestry-specific loci associated with attempting suicide among veterans, we conducted a genome-wide association study (GWAS) of suicide attempts within a large, multi-ancestry cohort of U.S. veterans enrolled in the Million Veterans Program (MVP). Cases were defined as veterans with a documented history of suicide attempts in the electronic health record (EHR; N = 14,089) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR (N = 395,064). GWAS was performed separately in each ancestry group, controlling for sex, age and genetic substructure. Pan-ancestry risk loci were identified through meta-analysis and included two genome-wide significant loci on chromosomes 20 (p = 3.64 × 10-9) and 1 (p = 3.69 × 10-8). A strong pan-ancestry signal at the Dopamine Receptor D2 locus (p = 1.77 × 10-7) was also identified and subsequently replicated in a large, independent international civilian cohort (p = 7.97 × 10-4). Additionally, ancestry-specific genome-wide significant loci were also detected in African-Americans, European-Americans, Asian-Americans, and Hispanic-Americans. Pathway analyses suggested over-representation of many biological pathways with high clinical significance, including oxytocin signaling, glutamatergic synapse, cortisol synthesis and secretion, dopaminergic synapse, and circadian rhythm. These findings confirm that the genetic architecture underlying suicide attempt risk is complex and includes both pan-ancestry and ancestry-specific risk loci. Moreover, pathway analyses suggested many commonly impacted biological pathways that could inform development of improved therapeutics for suicide prevention.


Subject(s)
Genome-Wide Association Study , Veterans , Black or African American/genetics , Genetic Loci , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Suicide, Attempted , White People/genetics
16.
Cancer Epidemiol Biomarkers Prev ; 29(2): 359-367, 2020 02.
Article in English | MEDLINE | ID: mdl-31871109

ABSTRACT

BACKGROUND: Sub-Saharan Africa (SSA) has a high proportion of premenopausal hormone receptor negative breast cancer. Previous studies reported a strikingly high prevalence of germline mutations in BRCA1 and BRCA2 among Nigerian patients with breast cancer. It is unknown if this exists in other SSA countries. METHODS: Breast cancer cases, unselected for age at diagnosis and family history, were recruited from tertiary hospitals in Kampala, Uganda and Yaoundé, Cameroon. Controls were women without breast cancer recruited from the same hospitals and age-matched to cases. A multigene sequencing panel was used to test for germline mutations. RESULTS: There were 196 cases and 185 controls with a mean age of 46.2 and 46.6 years for cases and controls, respectively. Among cases, 15.8% carried a pathogenic or likely pathogenic mutation in a breast cancer susceptibility gene: 5.6% in BRCA1, 5.6% in BRCA2, 1.5% in ATM, 1% in PALB2, 0.5% in BARD1, 0.5% in CDH1, and 0.5% in TP53. Among controls, 1.6% carried a mutation in one of these genes. Cases were 11-fold more likely to carry a mutation compared with controls (OR = 11.34; 95% confidence interval, 3.44-59.06; P < 0.001). The mean age of cases with BRCA1 mutations was 38.3 years compared with 46.7 years among other cases without such mutations (P = 0.03). CONCLUSIONS: Our findings replicate the earlier report of a high proportion of mutations in BRCA1/2 among patients with symptomatic breast cancer in SSA. IMPACT: Given the high burden of inherited breast cancer in SSA countries, genetic risk assessment could be integrated into national cancer control plans.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Cameroon/epidemiology , Case-Control Studies , DNA Mutational Analysis/statistics & numerical data , Female , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Middle Aged , Molecular Epidemiology , Prevalence , Uganda/epidemiology
17.
Graefes Arch Clin Exp Ophthalmol ; 255(8): 1613-1619, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28462455

ABSTRACT

PURPOSE: Retinitis pigmentosa (RP) is a genetically heterogeneous inherited retinal dystrophy. To date, over 80 genes have been implicated in RP. However, the disease demonstrates significant locus and allelic heterogeneity not entirely captured by current testing platforms. The purpose of the present study was to characterize the underlying mutation in a patient with RP without a molecular diagnosis after initial genetic testing. METHODS: Whole-exome sequencing of the affected proband was performed. Candidate gene mutations were selected based on adherence to expected genetic inheritance pattern and predicted pathogenicity. Sanger sequencing of MERTK was completed on the patient's unaffected mother, affected brother, and unaffected sister to determine genetic phase. RESULTS: Eight sequence variants were identified in the proband in known RP-associated genes. Sequence analysis revealed that the proband was a compound heterozygote with two independent mutations in MERTK, a novel nonsense mutation (c.2179C > T) and a previously reported missense variant (c.2530C > T). The proband's affected brother also had both mutations. Predicted phase was confirmed in unaffected family members. CONCLUSION: Our study identifies a novel nonsense mutation in MERTK in a family with RP and no prior molecular diagnosis. The present study also demonstrates the clinical value of exome sequencing in determining the genetic basis of Mendelian diseases when standard genetic testing is unsuccessful.


Subject(s)
DNA/genetics , Mutation , Retinitis Pigmentosa/genetics , c-Mer Tyrosine Kinase/genetics , DNA Mutational Analysis , Exome , Female , Humans , Male , Ophthalmoscopy , Pedigree , Retina/pathology , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/metabolism , c-Mer Tyrosine Kinase/metabolism
18.
Concurr Comput ; 26(13): 2266-2279, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25342933

ABSTRACT

We describe Globus Genomics, a system that we have developed for rapid analysis of large quantities of next-generation sequencing (NGS) genomic data. This system achieves a high degree of end-to-end automation that encompasses every stage of data analysis including initial data retrieval from remote sequencing centers or storage (via the Globus file transfer system); specification, configuration, and reuse of multi-step processing pipelines (via the Galaxy workflow system); creation of custom Amazon Machine Images and on-demand resource acquisition via a specialized elastic provisioner (on Amazon EC2); and efficient scheduling of these pipelines over many processors (via the HTCondor scheduler). The system allows biomedical researchers to perform rapid analysis of large NGS datasets in a fully automated manner, without software installation or a need for any local computing infrastructure. We report performance and cost results for some representative workloads.

19.
J Biomed Inform ; 49: 119-33, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24462600

ABSTRACT

Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.


Subject(s)
Computational Biology , Information Storage and Retrieval , Sequence Analysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...